Cart (Loading....) | Create Account
Close category search window
 

A computational algorithm for minimizing total variation in image restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuying Li ; Dept. of Comput. Sci., Cornell Univ., Ithaca, NY, USA ; Santosa, F.

A reliable and efficient computational algorithm for restoring blurred and noisy images is proposed. The restoration process is based on the minimal total variation principle introduced by Rudin et al. For discrete images, the proposed algorithm minimizes a piecewise linear l 1 function (a measure of total variation) subject to a single 2-norm inequality constraint (a measure of data fit). The algorithm starts by finding a feasible point for the inequality constraint using a (partial) conjugate gradient method. This corresponds to a deblurring process. Noise and other artifacts are removed by a subsequent total variation minimization process. The use of the linear l1 objective function for the total variation measurement leads to a simpler computational algorithm. Both the steepest descent and an affine scaling Newton method are considered to solve this constrained piecewise linear l1 minimization problem. The resulting algorithm, when viewed as an image restoration and enhancement process, has the feature that it can be used in an adaptive/interactive manner in situations when knowledge of the noise variance is either unavailable or unreliable. Numerical examples are presented to demonstrate the effectiveness of the proposed iterative image restoration and enhancement process

Published in:

Image Processing, IEEE Transactions on  (Volume:5 ,  Issue: 6 )

Date of Publication:

Jun 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.