By Topic

Sign-sign LMS convergence with independent stochastic inputs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dasgupta, S. ; Dept. of Electr. & Comput. Eng., Iowa Univ., Iowa City, IA, USA ; Johnson, C.R., Jr. ; Baksho, A.M.

The sign-sign adaptive least-mean-square (LMS) identifier filter is a computationally efficient variant of the LMS identifier filter. It involves the introduction of signum functions in the traditional LMS update term. Consideration is given to global convergence of parameter estimates offered by this algorithm, to a ball with radius proportional to the algorithm step size for white input sequences, specially from Gaussian and uniform distributions

Published in:

Information Theory, IEEE Transactions on  (Volume:36 ,  Issue: 1 )