Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Spectral Analysis of 1.55- \mu m InAs–InP(113)B Quantum-Dot Lasers Based on a Multipopulation Rate Equations Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Grillot, F. ; Center for High Technol. Mater. (CHTM), Univ. of New Mexico, Albuquerque, NM ; Veselinov, K. ; Gioannini, M. ; Montrosset, I.
more authors

In this paper, a theoretical model is used to investigate the lasing spectrum properties of InAs-InP(113)B quantum dot (QD) lasers emitting at 1.55 mum. The numerical model is based on a multipopulation rate equations analysis. Calculations take into account the QD size dispersion as well as the temperature dependence through both the inhomogeneous and the homogeneous broadenings. This paper demonstrates that the model is capable of reproducing the spectral behavior of InAs-InP QD lasers. Especially, this study aims to highlight the transition of the lasing wavelength from the ground state (GS) to the excited state (ES). In order to understand how the QD laser turns on, calculated optical spectra are determined for different cavity lengths and compared to experimental ones. Unlike InAs-GaAs QD lasers emitting at 1.3 mum, it is shown that a continuous transition from the GS to the ES is exhibited because of the large inhomogeneous broadening comparable to the GS and ES lasing energy difference.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:45 ,  Issue: 7 )