By Topic

Noncausal 2-D spectrum estimation for direction finding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. R. Hansen ; Dept. of Electr. Eng.-Syst., Univ. of Southern California, Los Angeles, CA, USA ; R. Chellappa

A two-dimensional noncausal autoregressive (NCAR) plus additive noise model-based spectrum estimation method is presented for planar array data typical of signals encountered in array processing applications. Since the likelihood function for NCAR plus noise data is nonlinear in the model parameters and is further complicated by the unknown variance of the additive noise, computationally intensive gradient search algorithms are required for computing the estimates. If a doubly periodic lattice is assumed, the complexity of the approximate maximum likelihood (ML) equation is significantly reduced without destroying the theoretical asymptotic properties of the estimates and degrading the observed accuracy of the estimated spectra. Initial conditions for starting the approximate ML computation are suggested. Experimental results that can be used to evaluate the signal-plus-noise approach and compare its performance to those of signal-only methods are presented for Gaussian and simulated planar array data. Statistics of estimated spectrum parameters are given, and estimated spectra for signals with close spatial frequencies are shown. The approximate ML parameter estimate's asymptotic properties, such as consistency and normality, are established, and lower bounds for the estimate's errors are derived, assuming that the data are Gaussian

Published in:

IEEE Transactions on Information Theory  (Volume:36 ,  Issue: 1 )