By Topic

Dynamic critical-path scheduling: an effective technique for allocating task graphs to multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Kwong Kwok ; Dept. of Comput. Sci., Hong Kong Univ., Hong Kong ; Ahmad, I.

In this paper, we propose a static scheduling algorithm for allocating task graphs to fully connected multiprocessors. We discuss six recently reported scheduling algorithms and show that they possess one drawback or the other which can lead to poor performance. The proposed algorithm, which is called the Dynamic Critical-Path (DCP) scheduling algorithm, is different from the previously proposed algorithms in a number of ways. First, it determines the critical path of the task graph and selects the next node to be scheduled in a dynamic fashion. Second, it rearranges the schedule on each processor dynamically in the sense that the positions of the nodes in the partial schedules are not fixed until all nodes have been considered. Third, it selects a suitable processor for a node by looking ahead the potential start times of the remaining nodes on that processor, and schedules relatively less important nodes to the processors already in use. A global as well as a pair-wise comparison is carried out for all seven algorithms under various scheduling conditions. The DCP algorithm outperforms the previous algorithms by a considerable margin. Despite having a number of new features, the DCP algorithm has admissible time complexity, is economical in terms of the number of processors used and is suitable for a wide range of graph structures

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:7 ,  Issue: 5 )