Cart (Loading....) | Create Account
Close category search window

Spectroscopic ellipsometry study of a self-organized Ge dot layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gallas, B. ; Laboratoire d’Optique des Solides, UMR7601, Université Pierre et Marie Curie–CNRS, 4 place Jussieu, 75252 Paris Cedex 05, France ; Rivory, J.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We report on the determination of the dielectric function of a Ge dot layer obtained by epitaxial growth on Si(001) in the presence of Sb as surfactant and capped by Si. After growth, spectroscopic ellipsometry reveals a SiGe alloy containing Ge rich regions. After etching the Si cap, the dielectric function of the Ge rich regions exhibits critical points located at 2.92, 3.65, and 4.25 eV. It is shown that this dielectric function does not correspond either to an alloy or to bulk Ge, and is affected by confinement. © 2003 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:94 ,  Issue: 4 )

Date of Publication:

Aug 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.