By Topic

Calculation of three-dimensional electromagnetic force field during arc welding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kumar, A. ; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802-5005 ; DebRoy, T.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Electromagnetic force is an important driving force for convection in the weld pool during arc welding. Accurate calculation of the electromagnetic force field requires complex numerical calculations of three-dimensional current density and magnetic flux fields. Several simplifying assumptions have been suggested to avoid the complex calculations. The resulting analytical expressions for the electromagnetic force field have been widely used without any critical evaluation of their intrinsic merit, since accurate numerical calculations were difficult in the past because of lack of fast computers. A numerical model has been developed to accurately calculate the current density and magnetic flux fields and the resulting electromagnetic force field in three dimensions in the entire weldment. The model can take into account any current distribution on the work piece surface and evaluate the effects of different arc locations and work piece geometry on the electromagnetic force field. Contributions of the electrode current, arc plasma, and current distribution inside the three-dimensional work piece to the magnetic field and the electromagnetic force field are determined. The electromagnetic force field computed from the model is compared with those obtained from the commonly used simplified expressions of electromagnetic force to examine the accuracy of the commonly used simplifying assumptions. The accuracy of the computed electromagnetic force field can be significantly improved by using the proposed numerical model. © 2003 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:94 ,  Issue: 2 )