By Topic

General entropy criteria for inverse problems, with applications to data compression, pattern classification, and cluster analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jones, L.K. ; Dept. of Math., Lowell Univ., MA, USA ; Byrne, C.L.

Minimum distance approaches are considered for the reconstruction of a real function from finitely many linear functional values. An optimal class of distances satisfying an orthogonality condition analogous to that enjoyed by linear projections in Hilbert space is derived. These optimal distances are related to measures of distances between probability distributions recently introduced by C.R. Rao and T.K. Nayak (1985) and possess the geometric properties of cross entropy useful in speech and image compression, pattern classification, and cluster analysis. Several examples from spectrum estimation and image processing are discussed

Published in:

Information Theory, IEEE Transactions on  (Volume:36 ,  Issue: 1 )