Cart (Loading....) | Create Account
Close category search window
 

Local structures and damage processes of electron irradiated α-SiC studied with transmission electron microscopy and electron energy-loss spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Muto, Shunsuke ; Center for Integrated Research in Science and Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan ; Tanabe, Tetsuo

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1555673 

Damaged structures of α-SiC below and above the critical temperature of amorphization (Tc) under high-energy electron irradiation were studied by means of transmission electron microscopy and electron energy-loss spectroscopy. Above Tc, crystal fragmentation takes place due to local lattice strains caused by preferential displacements, subsequent outward diffusion of carbon atoms and formation of silicon nano-clusters. On the other hand, the amorphous structure formed below Tc can be well characterized by the formation of Si–Si, Si–C, and sp3 C–C covalent bonds with the tetrahedral coordination locally retained and uniformly distributed. The primary amorphization process under electron irradiation can be interpreted by the defect-accumulation model, in which displaced atoms are frozen at interstitial sites before long-distance diffusion by reconstructing the surrounding structure to relax the local strains. Accordingly the amorphization process is controlled essentially by the mobility of displaced carbon and silicon atoms, and chemical disordering seems to play a minor role in triggering the amorphization. A key issue for irradiation induced volume swelling of amorphous SiC is also presented. © 2003 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:93 ,  Issue: 7 )

Date of Publication:

Apr 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.