By Topic

Nanopackaging Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Simulation tools as part of a virtual prototyping environment enable scientists and design engineers to answer "what-if" questions before actual costly experimentation and physical prototyping. Over the last 40 years, there has been an explosion in the use of simulation tools to predict electrical, thermal, and mechanical behavior of materials and the reliability of devices that contain microsystems. These tools are based on classical continuum mechanics (e.g., the finite element method), atomistic mechanics [e.g., classical molecular dynamics (MD)], or quantum mechanics (e.g., the density functional method). Figure 1 details the lengths and timescales at which each of these tools should be used.

Published in:

Nanotechnology Magazine, IEEE  (Volume:3 ,  Issue: 2 )