By Topic

Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhao, H. ; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 ; DebRoy, T.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A transport phenomena-based numerical model is developed to predict the keyhole geometry and temperature profiles in the weldment during laser welding. The model can be used to prevent macroporosity formation during laser welding of aluminum alloys. The experimental results show that the weld metal contains large pores when the welding mode changes from conduction to keyhole mode or vice versa due to changes in welding variables. Based on this observation, the mathematical model predicts macroporosity formation when welding is conducted under conditions where small changes in welding parameters lead to a change in the welding mode. The model has been used to predict the geometry of the keyhole and the fusion zone, and the weldment temperature field for laser beam welding of aluminum alloys 5182 and 5754. The calculated weld pool depth, width, and shape for different welding speeds agreed well with the experimental results. The calculations showed that the keyhole profiles for high-speed welding were asymmetric. Negative beam defocusing resulted in a deeper keyhole than that obtained with positive beam defocusing. The transition from keyhole to conduction mode was more abrupt for negative beam defocusing. The model could predict the formation of macroporosity during laser welding of aluminum alloys 5182 and 5754. The results provide hope that transport phenomena-based models can be useful to prevent the formation of macroporosity during keyhole mode laser welding of aluminum alloys. © 2003 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:93 ,  Issue: 12 )