Cart (Loading....) | Create Account
Close category search window

Test of response linearity for magnetic force microscopy data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yongsunthon, R. ; Department of Physics, University of Maryland, College Park, Maryland 20742 ; Williams, E.D. ; McCoy, J. ; Pego, R.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The utility of vertical propagation by the Green’s function to test response linearity has been explored for magnetic force microscopy (MFM) data from current-carrying wires, by comparing the measured signal at various tip heights to the corresponding propagated MFM signals. Application of a one-dimensional Green’s function was found to be sufficient to predict signal height variation for sample regions of high to moderate field symmetry. For regions of high field asymmetry, the two-dimensional Green’s function was required to obtain good prediction of the height variation. Agreement between the measured and propagated signals was generally within 5%, except at the tails where the signal is not well behaved. The quality of agreement deteriorates gradually with the size of the height propagation. The good agreement spanning a decade of tip and sample separation suggests that the MFM signal is not significantly affected by nonlinearities and can thus be interpreted in terms of classical electromagnetic relations governing current flow. © 2002 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:92 ,  Issue: 3 )

Date of Publication:

Aug 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.