Cart (Loading....) | Create Account
Close category search window
 

Elementary reaction schemes for physical and chemical vapor deposition of transition metal oxides on silicon for high-k gate dielectric applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Niu, D. ; Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695 ; Ashcraft, R.W. ; Kelly, M.J. ; Chambers, J.J.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1468253 

This article describes the kinetics of reactions that result in substrate consumption during formation of ultrathin transition metal oxides on silicon. Yttrium silicate films (∼40 Å) with an equivalent silicon dioxide thickness of ∼11 Å are demonstrated by physical vapor deposition (PVD) routes. Interface reactions that occur during deposition and during postdeposition treatment are observed and compared for PVD and chemical vapor deposition (CVD) yttrium oxides and CVD aluminum-oxide systems. Silicon diffusion, metal-silicon bond formation, and reactions involving hydroxides are proposed as critical processes in interface layer formation. For PVD of yttrium silicate, oxidation is thermally activated with an effective barrier of 0.3 eV, consistent with the oxidation of silicide being the rate-limited step. For CVD aluminum oxide, interface oxidation is consistent with a process limited by silicon diffusion into the deposited oxide layer. © 2002 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:91 ,  Issue: 9 )

Date of Publication:

May 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.