Cart (Loading....) | Create Account
Close category search window

Wave driven N2Ar discharge. II. Experiment and comparison with theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Henriques, J. ; Centro de Fı´sica dos Plasmas, Instituto Superior Técnico, 1049-001 Lisboa, Portugal ; Tatarova, E. ; Dias, F.M. ; Ferreira, C.M.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Discharges in N2Ar mixtures are experimentally investigated by means of optical emission and absorption spectroscopy, probe diagnostic techniques, and radiophysic methods. The experimental results provide insight into the mechanisms of wave-to-plasma power transfer, N2 dissociation, creation of N2+ ions, and excitation of metastable states [N2(A 3Σu+),Ar(3P2)]. These results are analyzed in the framework of the theoretical predictions of a model developed in a companion article. © 2002 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:91 ,  Issue: 9 )

Date of Publication:

May 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.