By Topic

Analog VLSI architectures for motion processing: from fundamental limits to system applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
R. Sarpeshkar ; Comput. & Neural Syst. Program, California Inst. of Technol., Pasadena, CA, USA ; J. Kramer ; G. Indiveri ; C. Koch

This paper discusses some of the fundamental issues in the design of highly parallel, dense, low-power motion sensors in analog VLSI. Since photoreceptor circuits are an integral part of all visual motion sensors, we discuss how the sizing of photosensitive areas can affect the performance of such systems. We review the classic gradient and correlation algorithms and give a survey of analog motion-sensing architectures inspired by them. We calculate how the measurable speed range scales with signal-to-noise ratio (SNR) for a classic Reichardt sensor with a fixed time constant. We show how this speed range may be improved using a nonlinear filter with an adaptive time constant, constructed out of a diode and a capacitor, and present data from a velocity sensor based on such a filter. Finally, we describe how arrays of such velocity sensors call be employed to compute the heading direction of a moving subject and to estimate the time-to-contact between the sensor and a moving object

Published in:

Proceedings of the IEEE  (Volume:84 ,  Issue: 7 )