Cart (Loading....) | Create Account
Close category search window

Physical integrated diffusion-oxidation model for implanted nitrogen in silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Adam, Lahir Shaik ; Department of Electrical Engineering, Software for Advanced Materials Processing (SWAMP) Center, University of Florida, Gainesville, Florida 32611 ; Law, M.E. ; Dokumaci, O. ; Hegde, Suri

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Scaling the gate oxide thickness is one of many process development challenges facing device engineers today. Nitrogen implantation has been used to control gate oxide thickness. By varying the dose of the nitrogen implant, process engineers can have multiple gate oxide thicknesses in the same process. Although it has been observed that nitrogen retards gate oxidation kinetics, the physics of how this occurs is not yet well understood. Since the retardation in oxide growth is due to the diffusion of nitrogen and its subsequent incorporation at the silicon/silicon oxide interface, the study of the diffusion behavior of nitrogen in silicon becomes important. Further, it is also necessary to study how this diffusion behavior impacts oxide growth. Models have been developed to explore these issues. The diffusion model is based on ab initio results and is compared to experimental results at two temperatures. The oxide reduction model is based on the diffusion of nitrogen to the surface. The surface nitrogen is coupled to the surface reaction rate of silicon and oxygen to moderate oxide growth. © 2002 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:91 ,  Issue: 4 )

Date of Publication:

Feb 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.