By Topic

Automatic topic detection strategy for information retrieval in spoken document

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shan Jin ; Dept. of Telecommun. Syst., Tech. Univ. of Berlin, Berlin ; Misra, H. ; Sikora, T. ; Jose, J.

This paper suggests an alternative solution for the task of spoken document retrieval (SDR). The proposed system runs retrieval on multi-level transcriptions (word and phone) produced by word and phone recognizers respectively, and their outputs are combined. We propose to use latent Dirichlet allocation (LDA) model for capturing the semantic information on word transcription. The LDA model is employed for estimating topic distribution in queries and word transcribed spoken documents, and the matching is performed at the topic level. Acoustic matching between query words and phonetically transcribed spoken documents is performed using phone-based matching algorithm. The results of acoustic and topic level matching methods are compared and shown to be complementary.

Published in:

Image Analysis for Multimedia Interactive Services, 2009. WIAMIS '09. 10th Workshop on

Date of Conference:

6-8 May 2009