By Topic

Synthesis and magnetic properties of CoPt–poly(methylmethacrylate) nanostructured composite material

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Fang, Jiye ; Advanced Materials Research Institute, University of New Orleans, Louisiana 70148 ; Tung, L.D. ; Stokes, K.L. ; He, Jibao
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We have prepared nanometer-sized CoPt particles dispersed in a poly(methyl methacrylate) (PMMA) matrix, as a novel nanostructured magnetic plastic, through a soft chemical processing route. In this work, CoPt nanoparticles were successfully synthesized from a solution phase reduction system in the presence of capping ligands and stabilizing agents at high temperature. The CoPt nanoparticles were annealed at 400 °C for 3 h, and were subsequently re-dispersed in methylmethacrylate (monomer). The polymerization was induced by a UV source and the hardness of final product was adjusted by varying the amount of monomeric cross-link agent. Annealed bare CoPt nanoparticles as a “core” material and CoPt–PMMA composite material were characterized by using energy dispersive spectroscopy, transmission electron microscopy, and x-ray diffraction, indicating that we are able to prepare CoPt nanoparticles with ≪10 nm in diameter (after annealing) by employing this high temperature colloidal processing method. Magnetic investigation of this CoPt–PMMA material indicates an intrinsic coercivity of 300 Oe at 300 K and 1665 Oe at 5 K. © 2002 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:91 ,  Issue: 10 )