Cart (Loading....) | Create Account
Close category search window
 

Lattice symmetry and magnetization reversal in micron-size antidot arrays in Permalloy film

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Vavassori, P. ; INFM-Dipartimento di Fisica, Università di Ferrara, via Paradiso 12, 44100 Ferrara, Italy ; Gubbiotti, G. ; Zangari, G. ; Yu, C.T.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1453321 

The magnetization reversal in four arrays of micron-size circular holes (antidots) in a Permalloy film has been studied by means of quantitative magneto-optic Kerr vector magnetometry and magnetic force microscopy. The primitive antidot meshes of the arrays investigated here can be classified as square, rectangular, hexagonal, and oblique. The vector magnetometry data show that the hole arrays induce a magnetic anisotropy completely different from that of the unpatterned film, with new hard axes along the directions connecting nearest neighboring holes. Also the coercive field is strongly affected by the pattern. The results of the vector magnetometry analysis indicate that the reversal process takes place through a collective and periodic domain nucleation and expansion process. The domain structure in the remanent state has been investigated by magnetic force microscopy imaging. The images display well-defined domain structures, which are periodic and commensurate with the holes array. © 2002 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:91 ,  Issue: 10 )

Date of Publication:

May 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.