Cart (Loading....) | Create Account
Close category search window
 

Structural, thermal, and magnetic properties of Ni2MnGa

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Enkovaara, J. ; Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 Hut, Finland ; Ayuela, A. ; Nordstrom, L. ; Nieminen, R.M.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1453933 

The two main effects underlying the magnetic shape memory effect in Ni2MnGa are martensitic transformations and magnetic anisotropy energies. Both issues are addressed here with first-principles calculations. First, we examine how the tetragonality in the martensitic phase varies with the composition. Then, the actual transformation is investigated by comparing the free energies of different phases. The transition from the cubic structure to the tetragonal structure with c/a=1.27 is driven by the vibrational free energy and occurs at a temperature of 200 K which is in the experimental range. Finally, we focus on the magnetic anisotropy energy for the tetragonal structure with c/a=0.94. It is shown to be a magnetically nearly ideal uniaxial system determined by the first-order anisotropy constant. However, it is estimated that the twinned microstructure can cause higher-order anisotropies to show up in the measured anisotropy. © 2002 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:91 ,  Issue: 10 )

Date of Publication:

May 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.