By Topic

Neuro-adaptive hybrid controller for robot-manipulator tracking control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Behera, L. ; Dept. of Electr. Eng., Indian Inst. of Technol., Delhi, India ; Chaudhury, S. ; Gopal, M.

The paper is concerned with the design of a hybrid controller structure, consisting of the adaptive control law and a neural-network-based learning scheme for adaptation of time-varying controller parameters. The target error vector for weight adaptation of the neural networks is derived using the Lyapunov-function approach. The global stability of the closed-loop feedback system is guaranteed, provided the structure of the robot-manipulator dynamics model is exact. Generalisation of the controller over the desired trajectory space has been established using an online weight-learning scheme. Model learning, using a priori knowledge of a robot arm model, has been shown to improve tracking accuracy. The proposed control scheme has been implemented using both MLN and RBF networks. Faster convergence, better generalisation and superior tracking accuracy have been achieved in the case of the RBF network

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:143 ,  Issue: 3 )