Cart (Loading....) | Create Account
Close category search window

Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Chhowalla, M. ; Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom ; Teo, K.B.K. ; Ducati, C. ; Rupesinghe, N.L.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The growth of vertically aligned carbon nanotubes using a direct current plasma enhanced chemical vapor deposition system is reported. The growth properties are studied as a function of the Ni catalyst layer thickness, bias voltage, deposition temperature, C2H2:NH3 ratio, and pressure. It was found that the diameter, growth rate, and areal density of the nanotubes are controlled by the initial thickness of the catalyst layer. The alignment of the nanotubes depends on the electric field. Our results indicate that the growth occurs by diffusion of carbon through the Ni catalyst particle, which rides on the top of the growing tube. © 2001 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:90 ,  Issue: 10 )

Date of Publication:

Nov 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.