By Topic

Nearly 100% internal phosphorescence efficiency in an organic light-emitting device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Adachi, C. ; Center for Photonics and Optoelectronic Materials (POEM), Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 ; Baldo, Marc A. ; Thompson, Mark E. ; Forrest, S.R.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We demonstrate very high efficiency electrophosphorescence in organic light-emitting devices employing a phosphorescent molecule doped into a wide energy gap host. Using bis(2-phenylpyridine)iridium(III) acetylacetonate [(ppy)2Ir(acac)] doped into 3-phenyl-4(1-naphthyl)-5-phenyl-1,2,4-triazole, a maximum external quantum efficiency of (19.0±1.0)% and luminous power efficiency of (60±5) lm/W are achieved. The calculated internal quantum efficiency of (87±7)% is supported by the observed absence of thermally activated nonradiative loss in the photoluminescent efficiency of (ppy)2Ir(acac). Thus, very high external quantum efficiencies are due to the nearly 100% internal phosphorescence efficiency of (ppy)2Ir(acac) coupled with balanced hole and electron injection, and triplet exciton confinement within the light-emitting layer. © 2001 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:90 ,  Issue: 10 )