Cart (Loading....) | Create Account
Close category search window
 

InGaAs/InP quantum well intermixing studied by cross-sectional scanning tunneling microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Huajie Chen ; Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 ; McKay, H.A. ; Feenstra, R.M. ; Aers, G.C.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1361237 

Cross-sectional scanning tunneling microscopy (STM) is used to study lattice matched InGaAs/InP quantum well (QW) intermixing induced by ion implantation and thermal annealing. Different strain development in QWs (determined by STM topography of elastic relaxation in cross sectionally cleaved samples) is found to be dependent upon the range of the implanted ions relative to the QWs. It is found that the quantum wells remain latticed matched to the barrier layers after intermixing when ions are implanted through the multiple quantum well (MQW) stack. A shallow implantation in which ions are implanted into the cap layer above the MQW stack leads to tensilely strained wells and compressively strained interfaces between wells and barriers. The strain development in the latter case is attributed to different degrees of interdiffusion on the group III and group V sublattices. Finite element elastic computations are used to extract the group V and group III interdiffusion length ratio, and results using different diffusion models are compared. A preferred group V interdiffusion in the case of shallow implantation is explained in terms of faster diffusing P related defects compared to In related defects. Images of as-grown QWs provide useful information about the growth technique related compositional fluctuations at the interfaces. © 2001 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:89 ,  Issue: 9 )

Date of Publication:

May 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.