Cart (Loading....) | Create Account
Close category search window

Domain state model for exchange bias

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nowak, U. ; Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universität Duisburg, 47048 Duisburg, Germany ; Misra, A. ; Usadel, K.D.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Monte Carlo simulations of a system consisting of a ferromagnetic layer exchange coupled to a diluted antiferromagnetic layer described by a classical spin model show a strong dependence of the exchange bias on the degree of dilution in agreement with recent experimental observations on Co/CoO bilayers. These simulations reveal that diluting the antiferromagnet leads to the formation of domains in the volume of the antiferromagnet carrying a remanent surplus magnetization which causes and controls exchange bias. To further support this domain state model for exchange bias we study, in the present article, the dependence of the bias field on the thickness of the antiferromagnetic layer. It is shown that the bias field strongly increases with increasing film thickness and eventually goes over a maximum before it levels out for large thicknesses. These findings are in full agreement with experiments. © 2001 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:89 ,  Issue: 11 )

Date of Publication:

Jun 2001

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.