Cart (Loading....) | Create Account
Close category search window

Electronic and isochronal annealing properties of electron traps in rapid thermally annealed SiO2-capped n-type GaAs epitaxial layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Deenapanray, P.N.K. ; Department of Electronic Materials Engineering, Research School of Physical Science and Engineering, The Australian National University, Canberra, A.C.T. 0200, Australia ; Tan, H.H. ; Jagadish, C. ; Auret, F.D.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We have recently shown [P. N. K. Deenapanray etal, Appl. Phys. Lett. 77, 626 (2000)] that four electron traps S1(Ec-0.23 eV), S2(Ec-0.46 eV), S3(Ec-0.72 eV), and S4(Ec-0.74 eV) are introduced in rapid thermally-annealed (RTA) SiO2-capped n-type GaAs epitaxial layers. In the present study, we have used deep level transient spectroscopy to investigate the electronic and annealing properties of these deep levels. The electron emission kinetics of S1 is enhanced by an electric field, and the activation energy of S1 decreases linearly from ∼233 to ∼199 meV when the field is increased from 7.5×104 to 13.4×104V cm-1. The intensities of S1, S2, and S4 show Arrhenius-like dependencies on the RTA temperature, which relate to the outdiffusion of Ga atoms into the SiO2 layer. The intensity of S2(VGaSiGa) also increases exponentially with the square of the annealing time for RTA at 800 °C. Isochronal annealing experiments show that S1 and S2 are thermally stable below 500 and 400 °C, respectively. S4, which is a member of the EL2 family, is stable up to 600 °C. Secondary defects are introduced during isochronal annealing above 400 °C, and some of these defects are thermally stable at 600Ȁ- 9;°C. © 2000 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:88 ,  Issue: 9 )

Date of Publication:

Nov 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.