By Topic

Hole diffusion at the recombination junction of thin film tandem solar cells and its effect on the illuminated current–voltage characteristic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Palit, N. ; Energy Research Unit, Indian Association for the Cultivation of Science, Calcutta 700 032, India ; Dasgupta, A. ; Ray, S. ; Chatterjee, P.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Computer simulation of experimental current density–voltage (J–V) and quantum efficiency characteristics of thin film p1-i1-n1-p2 structures and of double junction solar cells (p1-i1-n1-p2-i2-n2), has been used to understand the hole transport mechanisms near the np “tunnel” junction between two subcells of a multijunction structure. Two different types of p layers at the junction have been studied: (i) hydrogenated microcrystalline silicon (μc-Si:H) and (ii) hydrogenated amorphous silicon carbide (a-SiC:H). There is a striking difference between the experimental J–V characteristics for the p1-i1-n1-p2 structures, with case (i) having a fairly high fill factor (FF) and conversion efficiency (η), as against a very low FF and η in case (ii). Although the difference is much smaller for double junction cells employing these two types of materials as the p layer at the junction, the fill factor of the cell employing μc-Si:H is about 8% higher. Analysis of transport properties as a function of position by computer modeling reveals that the main difference in behavior between the two cases is due to the much higher free hole population in the p layer at the junction when it is microcrystalline; which in turn, is a direct consequence of the lower activation energy for this case. We also learn that not only tunneling and the electric field in the bottom subcell, but also diffusion, plays a major role in pushing the holes produced in it by the incident light towards the recombination layer at the junction; and thereby helps improve cell performan- ce, especially its fill factor. We conclude that the p layer at the junction should have a high free hole density (low activation energy in the device), to attain an overall high fill factor and conversion efficiency. Another interesting inference is the fact that tunneling as transport mechanism for holes towards the junction is more important when the p layer at the junction is a-SiC:H than when it is microcrystalline, while diffusion plays a more prominent role in propelling holes towards the junction in the latter case. © 2000 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:88 ,  Issue: 5 )