Cart (Loading....) | Create Account
Close category search window

Preparation and performance of transmission-mode GaAs photocathodes as sources for cold dc electron beams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Pastuszka, S. ; Max Planck Institut für Kernphysik and Physikalisches Institut der Universität, 69029 Heidelberg, Germany ; Hoppe, M. ; Kratzmann, D. ; Schwalm, D.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Photoemission from GaAs cathodes with negative electron affinity (NEA) is applied for producing electron beams with very low longitudinal and transverse velocity spread. GaAs transmission-mode cathodes were activated with Cs and either O2 or NF3 in an extremely high vacuum setup (base pressure below 10-12mbar). Quantum efficiencies of 20%–25% (at 670 nm) and long dark lifetimes (about 1000 h) could be achieved for both types of activation in a reproducible way. Using a method based on the adiabatic transverse expansion of an electron beam in a spatially decreasing magnetic field, the mean transverse energy (MTE) of the photoemitted electrons was measured systematically, recording longitudinal energy distribution curves. Both the MTE and the longitudinal energy spread strongly depend on the value of NEA and the position of the extracted distribution relative to the bulk conduction band minimum. Electrons with energies above the conduction band minimum are thermalized with the lattice temperature of the cathode, while electrons with energies below this level show a non-Maxwellian distribution with enhanced transverse energies. Thus, when extracting all electrons in a current limited emission mode, the MTE increases with the absolute value of NEA and reaches values up to ≈100 meV. By cutting off the low energy electrons with an external potential barrier, the longitudinal as well as transverse energy spread of the extracted electron ensemble are reduced. The MTE could be reduced down to about 28 meV at room temperature and to about 14 meV at liquid nitrogen temperature. The behavior of the MTE was found equivalent for (Cs, O) and for (Cs, F) activation layers on the same cathode. Conclusions about energy loss and scattering i- n the emission of photoelectrons from NEA GaAs cathodes are discussed. © 2000 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:88 ,  Issue: 11 )

Date of Publication:

Dec 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.