Cart (Loading....) | Create Account
Close category search window
 

Compositional dependence of the soft magnetic properties of the nanocrystalline Fe–Zr–Nb–B alloys with high magnetic flux density

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Makino, A. ; Department of Machine Intelligence and System Engineering, Faculty of System Science and Technology, Akita Prefectural University, Honjo 015-0055, Japan ; Bitoh, T. ; Kojima, A. ; Inoue, A.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.372943 

The compositional dependence of the soft magnetic properties of the nanocrystalline Fe–Zr–Nb–B alloys has been investigated. The magnetostriction s) and the grain size of the (Fe90Zr7B3)1-x(Fe84Nb7B9)x alloys, which are two typical ternary alloys mixed with the best soft magnetic properties, show intermediate values between those of the Fe90Zr7B3 with negative λs and the Fe84Nb7B9 with positive λs. However, the soft magnetic properties of the Fe–(Zr, Nb)7–B alloys are inferior to those of the Fe90Zr7B3 and the Fe84Nb7B9 alloys. The best soft magnetic properties have been obtained at Zr+Nb=6 at. %. The Fe85.5Zr2Nb4B8.5 alloy shows a high μ- ;e of 60 000 at 1 kHz, a high Bs of 1.64 T, and zero λs, simultaneously. The alloy also exhibits a very low core loss of 0.09 W/kg at 1.4 T and 50 Hz, which is extremely lower than that of Fe–Si–B amorphous alloys. The nanocrystalline Fe–Zr–Nb–B alloys with improved soft magnetic properties are therefore suitable for pole transformers. © 2000 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:87 ,  Issue: 9 )

Date of Publication:

May 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.