Cart (Loading....) | Create Account
Close category search window

Large field induced strain in single crystalline Ni–Mn–Ga ferromagnetic shape memory alloy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Murray, S.J. ; Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ; Marioni, M.A. ; Kukla, A.M. ; Robinson, J.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A room temperature free shear strain of 5.7% is reported in a single crystal of Ni–Mn–Ga having a composition close to the Heusler alloy Ni2MnGa. A twin boundary was created in a 2 mm×2 mm×25 mm single crystal using a permanent magnet with surface field strength of about 320 000 A/m. A sharp 6.5° bend occurs in the sample at the twin boundary. The surface magnetization changes abruptly across this boundary. By moving the sample relative to the edge of the magnet, we were able to sweep the boundary back and forth along the crystal length. Surface magnetization was measured using a Hall probe and the results confirm that the easy axis is the tetragonal c axis. Powder x-ray diffraction shows that the fcc to body-centered-tetragonal bct martensitic transition of this material involved a 6% reduction of the bct cell c/a ratio, from  to about 1.33. The maximum achievable strain is thus estimated to be 6.2%. The twin planes in the system are the {112}bct and were observed to lie almost normal to the long axis of the sample tested. © 2000 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:87 ,  Issue: 9 )

Date of Publication:

May 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.