By Topic

Ellipsometric study of polycrystalline silicon films prepared by low-pressure chemical vapor deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Petrik, P. ; MTA-MFA, Research Institute for Technical Physics and Materials Science, H-1121 Budapest, Konkoly Thege u. 29-33., Hungary ; Lohner, T. ; Fried, M. ; Biro, L.P.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.372085 

Polysilicon layers with thicknesses between 8 and 600 nm deposited by low-pressure chemical vapor deposition at temperatures ranging from 560 to 640 °C were characterized by spectroscopic ellipsometry (SE) to determine the layer thicknesses and compositions using multilayer optical models and the Bruggeman effective-medium approximation. The dependence of the structural parameters on the layer thickness and deposition temperature have been investigated. A better characterization of the polysilicon layer is achieved by using the reference data of fine-grained polysilicon in the optical model. The amount of voids in the polysilicon layer was independently measured by Rutherford backscattering spectrometry (RBS). The SE and RBS results show a good correlation. The comparison of the surface roughness measured by SE and atomic force microscopy (AFM) shows that independently of the AFM window sizes, a good correlation of the roughness determined by SE and AFM was obtained. © 2000 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:87 ,  Issue: 4 )