By Topic

Thickness and temperature dependence of electrical properties of Bi2(Te0.1Se0.9)3 thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Damodara Das, V. ; Thin Film Laboratory, Department of Physics, Indian Institute of Technology, Madras, Chennai 600 036, India ; Selvaraj, S.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Thin films of different thicknesses have been vacuum deposited onto clean glass plates held at room temperature using the flash evaporation technique in a vacuum of 2×10-5 Torr. The structural characterization of the bulk and the thin films was carried out using x-ray diffraction, transmission electron microscopy, and selected area electron diffraction techniques. Electrical resistance and thermoelectric power of the films were measured in the same vacuum of 2×10-5 Torr in the temperature range 300–450 K. The conduction activation energy of the films was calculated using the electrical resistivity and thermoelectric power data of the films. The thickness dependence of the activation energy observed is attributed to the polycrystalline nature of the films. Grain growth and reorientation of the grains take place during the annealing process. The thickness dependence of electrical resistivity and thermoelectric power of the films are explained by the effective mean free path model [C. R. Tellier, Thin Solid Films 51, 311 (1978)]. The important physical parameters like mean free path, Fermi energy, power index of the energy dependant expression for the mean free path, the hypothetical bulk resistivity and the thermoelectric power have been calculated by the combined analysis of electrical resistivity and thermoelectric power. The electron-phonon scattering mechanism is found to be dominant in the material. © 1999 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:86 ,  Issue: 3 )