By Topic

Analysis of failure mechanisms in electrically stressed Au nanowires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Durkan, C. ; Department of Engineering, Nanoscale Science Group, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom ; Schneider, M.A. ; Welland, M.E.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

An analysis of polycrystalline Au thin film interconnects of widths ranging from 850 to 25 nm, and lengths ranging from 1.0 μm to 20 nm which have been electrically stressed to the point of failure is presented. For the longer wires (widths 60–850 nm), the failure current density is typically found to be 1012A m-2, essentially independent of the wire width, and then rapidly approaching zero for thinner wires. For the wider wires, failure occurs at the end towards the negative electrode; for narrow wires, failure tends to occur towards the center of the wire, as observed using scanning electron microscopy and atomic force microscopy. The mean time to failure for fixed current density is seen to decrease with decreasing wire width. The failure current density for a given wire width increases as the length decreases. An analysis of the temperature profile based on calculations of a simple model is presented which shows that this width-dependent behavior of narrow lines is not anticipated from the assumption of a homogeneous line subject to thermally-assisted electromigration alone. © 1999 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:86 ,  Issue: 3 )