Cart (Loading....) | Create Account
Close category search window
 

Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nolte, David D. ; Department of Physics, Purdue University, West Lafayette, Indiana 47907-1396

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.370284 

This review covers a spectrum of optoelectronic properties of and uses for semi-insulating semiconductor heterostructures and thin films, including epilayers and quantum wells. Compensation by doping, implantation, and nonstoichiometric growth are described in terms of the properties of point defects and Fermi level stabilization and pinning. The principal optical and optoelectronic properties of semi-insulating epilayers and heterostructures, such as excitonic electroabsorption of quantum-confined excitons, are described, in addition to optical absorption by metallic or semimetallic precipitates in these layers. Low-temperature grown quantum wells that have an arsenic-rich nonstoichiometry and a supersaturated concentration of grown-in vacancies are discussed. These heterostructures experience transient enhanced diffusion and superlattice disordering. The review discusses the performance of optoelectronic heterostructures and microcavities that contain semi-insulating layers, such as buried heterostructure stripe lasers, vertical cavity surface emitting lasers, and optical electroabsorption modulators. Short time-scale applications arise from the ultrashort carrier lifetimes in semi-insulating materials, such as in photoconductors for terahertz generation, and in saturable absorbers for mode-locking solid state lasers. This review also comprehensively describes the properties and applications of photorefractive heterostructures. The low dark-carrier concentrations of semi-insulating heterostructures make these materials highly sensitive as dynamic holographic thin films that are useful for adaptive optics applications. The high mobilities of free carriers in photorefractive heterostructures produce fast dielectric relaxation rates that allow light-induced space-charge gratings to adapt to rapidly varying optical fringe patterns, canceling out environmental noise during interferometric detection in laser-based ultrasound, and in optical coherence tomography. They ar- e also the functional layers in high-sensitivity dynamic holographic materials that replace static holograms in Fourier imaging systems and in experimental Tbit/s optical systems. Semi-insulating heterostructures and their applications have attained a degree of maturity, but many critical materials science issues remain unexplored. © 1999 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:85 ,  Issue: 9 )

Date of Publication:

May 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.