Cart (Loading....) | Create Account
Close category search window
 

1.3-μm strained MQW-DFB lasers with extremely low intermodulation distortion for high-speed analog transmission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Watanabe, H. ; Optoelectron. & Microwave Devices R&D Lab., Mitsubishi Electr. Corp., Hyogo ; Aoyagi, T. ; Takemoto, A. ; Omura, B.

The intermodulation distortion and the noise characteristics of 1.3-μm strained multiquantum-well distributed feedback (MQW-DFB) lasers have been investigated under the modulation frequency of 1.9 GHz in connection with the device structure. In this study, a strained MQW with strain-compensated layers has been introduced in order to increase in the quantum-well number and well width. This causes increase in the differential gain, resulting in increase of the resonance frequency (FR). The FR as high as 5.1 GHz/mW1/2 has been obtained which is in good agreement with the theoretical calculation. In addition to the strained MQW structure, a new buried heterostructure entirely grown by MOCVD, named as FSBH (facet selective growth buried heterostructure), has been developed to minimize the leakage current which degrades L-I characteristics at high bias current causing the high distortion. The third-order-intermodulation distortion (IMD3) of -88 dBc and relative intensity noise (RIN) of -152 dB/Hz have been obtained under a two-tone test at 1.9 GHz. This suggests that this newly developed laser is quite suitable for high-speed-subcarrier multiplexing transmission

Published in:

Quantum Electronics, IEEE Journal of  (Volume:32 ,  Issue: 6 )

Date of Publication:

Jun 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.