By Topic

Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Knippels, G.M.H. ; FOM Inst. for Plasma Phys., Nieuwegein, Netherlands ; van de Meer, A.F.G. ; Mols, R.F.X.A.M. ; Oepts, D.
more authors

The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses. Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses. We present second-order autocorrelation measurements of the subpulses at several far-infrared wavelengths while applying a step-taper in the undulator field. The operation with a step-tapered undulator prevents the electrons from reabsorbing the optical field energy, leading to a smooth optical pulse. For different settings of the undulator the measured pulse shape and corresponding power spectrum are discussed. It is possible without decreasing the small-signal gain to produce a smooth high-power optical pulse during the whole saturated part of the machine pulse in an FEL oscillator with a reverse-step tapered undulator

Published in:

Quantum Electronics, IEEE Journal of  (Volume:32 ,  Issue: 6 )