By Topic

Maximum-likelihood parameter estimation of discrete homogeneous random fields with mixed spectral distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. M. Francos ; Dept. of Electr. & Comput. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel ; A. Narasimhan ; J. W. Woods

This paper presents a maximum-likelihood solution to the general problem of fitting a parametric model to observations from a single realization of a real valued, 2-D, homogeneous random field with mixed spectral distribution. On the basis of a 2-D Wold-like decomposition, the field is represented as a sum of mutually orthogonal components of three types: purely indeterministic, harmonic, and evanescent. The proposed algorithm provides a complete solution to the joint estimation problem of the random field components. By introducing appropriate parameter transformations, the highly nonlinear least-squares problem that results from the maximization of the likelihood function is transformed into a separable least-squares problem. In this new problem, the solution for the unknown spectral supports of the harmonic and evanescent components reduces the problem of solving for the transformed parameters of the field to linear least squares. Solution of the transformation equations provides a complete solution of the field model parameter estimation problem

Published in:

IEEE Transactions on Signal Processing  (Volume:44 ,  Issue: 5 )