By Topic

Design methodology for synthesizing clock distribution networks exploiting nonzero localized clock skew

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Neves, J.L. ; Dept. of Electr. Eng., Rochester Univ., NY, USA ; Friedman, E.G.

An integrated top-down design methodology is presented in this brief for synthesizing high performance clock distribution networks based on application dependent localized clock skew. The methodology is divided into four phases: (1) determining an optimal clock skew schedule composed of a set of nonzero clock skew values and the related minimum clock path delays; (2) designing the topology of the clock distribution network with delays assigned to each branch based on the circuit hierarchy, the aforementioned clock skew schedule, and minimizing process and environmental delay variations; (3) designing circuit structures to emulate the delay values assigned to the individual branches of the clock tree; and (4) designing the physical layout of the clock distribution network. The clock distribution network synthesis methodology is based on CMOS technology. The clock lines are transformed from distributed resistive capacitive interconnect lines into purely capacitive interconnect lines by partitioning the RC interconnect lines with inverting repeaters. Variations in process parameters are considered during the circuit design of the clock distribution network to guarantee a race-free circuit. Nominal errors of less than 2.5% for the delay of the clock paths and 7% for the clock skew between any two registers belonging to the same global data path as compared with SPICE Level-3 are demonstrated.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:4 ,  Issue: 2 )