Cart (Loading....) | Create Account
Close category search window

Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shi, Yi ; Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, Japan ; Saito, Kenichi ; Ishikuro, H. ; Hiramoto, T.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Charge storage characteristics have been investigated in metal-oxide-semiconductor memory structures based on silicon nanocrystals, where various interface traps and defects were introduced by thermal annealing treatment. The observations demonstrate that traps have strong influence on the charge storage behavior, in which the traps and defects at the internal/surface of silicon nanocrystals and the interface states at the SiO2/Si substrate play different roles, respectively. It is suggested that the injected charges are mainly stored at the deep traps of nanocrystals instead of the conduction band in long-term retention mode. The long-term charge-loss process is dominantly determined by the direct tunneling of the trapped charges to the interface states in the present experiment. An optimum way to improve the retention time would be to introduce a certain number of deep trapping centers in nanocrystals and to decrease the interface states at SiO2/Si substrate. © 1998 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:84 ,  Issue: 4 )

Date of Publication:

Aug 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.