By Topic

Two-step dopant diffusion study performed in two dimensions by scanning capacitance microscopy and TSUPREM IV

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kim, J. ; Department of Physics, University of Utah, Salt Lake City, Utah 84112 ; McMurray, J.S. ; Williams, C.C. ; Slinkman, J.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We report the results of a two-step two-dimensional (2D) diffusion study by scanning capacitance microscopy (SCM) and 2D SUPREM IV process simulation. A quantitative 2D dopant profile of a gate-like structure is measured with the SCM on a cross-sectioned polished silicon wafer. The gate-like structures consist of heavily implanted n+ regions separated by a lighter doped n-type region underneath 0.56 μm gates. The SCM is operated in the constant-change-in-capacitance mode. The 2D SCM data are converted to dopant density through a physical model of the SCM/silicon interaction. This profile has been directly compared with 2D SUPREM IV process simulation and used to calibrate the simulation parameters. The sample is then further subjected to an additional diffusion in a furnace for 80 min at 1000 °C. The SCM measurement is repeated on the diffused sample. This final 2D dopant profile is compared with a SUPREM IV process simulation tuned to fit the earlier profile with no change in the parameters except the temperature and time for the additional diffusion. Our results indicate that there is still a significant disagreement between the two profiles in the lateral direction. SUPREM IV simulation considerably underestimates the diffusion under the gate region. © 1998 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:84 ,  Issue: 3 )