By Topic

Hysteresis behavior in 85-nm channel length vertical n-MOSFETs grown by MBE

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rao, V.R. ; Fakultat fur Elektrotech., Univ. der Bundeswehr Munchen, Neubiberg, Germany ; Wittmann, F. ; Gossner, H. ; Eisele, I.

Vertical n-MOSFETs with channel lengths of 85 nm have been grown by MBE. For drain-to-source voltages VDS>3.3 V, these transistors exhibit hysteresis behavior similar to the reported behavior of fully depleted SOI-MOSFETs. Our results also show a gate voltage controlled turn-off of the drain current when the transistor is operating in the hysteresis mode. We have analyzed this behavior in vertical n-MOSFETs using 2-D device simulation and our results show a threshold value for the hole concentration across the source-channel junction which is required for the forward biasing of this junction. For a transistor operating in the hysteresis mode, we show that the potential barrier height for electron injection across the source-channel junction increases for increasing negative gate voltages during retrace. This results in a gate controlled turn-off of the drain current for SOI and vertical n-MOSFETs operating in the regenerative mode

Published in:

Electron Devices, IEEE Transactions on  (Volume:43 ,  Issue: 6 )