Cart (Loading....) | Create Account
Close category search window

A study on interface and charge trapping properties of nitrided n-channel metal-oxide-semiconductor field-effect transistors by backsurface argon bombardment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lai, P.T. ; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong ; Xu, J.P. ; Lo, H.B. ; Cheng, Y.C.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

A low-energy (550 eV) argon-ion beam was used to directly bombard the backsurface of nitrided n-channel metal-oxide-semiconductor field-effect transistors (n-MOSFETs) after the completion of all conventional processing steps. The interface and oxide-charge trapping characteristics of the bombarded MOSFETs were investigated as compared to nonbombarded and reoxidized-nitrided n-MOSFETs. It was found that after bombardment, interface state density decreases and interface hardness against hot-carrier bombardment enhances, and oxide charge trapping properties were also improved. The improvements exhibit a turnaround behavior depending on bombardment conditions and could be attributed to stress compensation in the vicinity of the Si/SiO2 interface and an annealing effect. © 1997 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:82 ,  Issue: 4 )

Date of Publication:

Aug 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.