By Topic

Multilayer film stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sridhar, N. ; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 ; Rickman, J.M. ; Srolovitz, D.J.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We apply a linear stability analysis to examine the effect of misfit stress on the interface diffusion controlled morphological stability of multilayer microstructures. The stresses could be the result of misfit strains between the individual film layers and/or between film and substrate. We find that misfit between the layers in the film can destabilize the multilayer structure in cases where the thinner layer is elastically stiffer than the thicker layer. The rate at which these instabilities develop increase with increasing misfit and decreasing interfacial energy. Even when there is no misfit between layers, the misfit between the multilayer film and substrate can destabilize the interfaces. This type of instability occurs whether the thinner layers are stiffer or more compliant than the thicker ones. By appropriate choice of the elastic moduli mismatch between layers and relative layer thicknesses, the presence of an interlayer misfit can suppress the instability caused by the substrate misfit. We present stability diagrams that can be used to design stable, multilayer films using all of the degrees of freedom commonly available in multilayer film deposition. © 1997 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:82 ,  Issue: 10 )