Cart (Loading....) | Create Account
Close category search window
 

Wave propagation in an epoxy-graphite laminate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Clements, B.E. ; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 ; Johnson, J.N. ; Addessio, F.L.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.366343 

The third-order, nonhomogenized, dynamic method of cells is used to calculate the particle velocity for a shock wave experiment involving an epoxy–graphite laminate. Constitutive relations suitable for the various materials are used. This includes linear and nonlinear elasticity and, when appropriate, viscoelasticity. It is found to be beneficial to incorporate artificial viscosity into the analysis. Artificial viscosity successfully removes the unphysical high-frequency ringing in the numerical solutions of the theory, while leaving the physical oscillations, characteristic of wave propagation in a periodic laminate, largely undiminished. It also allows the viscoelastic relaxed moduli to be closer to their unrelaxed counterparts than in a previous calculation, thus making them more acceptable. The results agree well with the corresponding plate-impact experiment, and are compared to the second-order theory of Clements, Johnson, and Hixson [Phys. Rev. E, 54, 6876 (1996)]. © 1997 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:82 ,  Issue: 10 )

Date of Publication:

Nov 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.