Cart (Loading....) | Create Account
Close category search window

The effect of boron implant energy on transient enhanced diffusion in silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Liu, J. ; Department of Materials Science and Engineering, University of Florida, Gainsville, Florida 32611 ; Krishnamoorthy, V. ; Gossmann, H.‐J. ; Rubin, L.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Transient enhanced diffusion (TED) of boron in silica after low energy boron implantation and annealing was investigated using boron-doping superlattices (DSLs) grown by low temperature molecular beam epitaxy. Boron ions were implanted at 5, 10, 20, and 40 keV at a constant dose of 2×1014/cm2. Subsequent annealing was performed at 750 °C for times of 3 min, 15 min, and 2 h in a nitrogen ambient. The broadening of the boron spikes was measured by secondary ion mass spectroscopy and simulated. Boron diffusivity enhancement was quantified as a function of implant energy. Transmission electron microscopy results show that 〈311〉 defects are only seen for implant energies ⩾10 keV at this dose and that the density increases with energy. DSL studies indicate the point defect concentration in the background decays much slower when 〈311〉 defects are present. These results imply there are at least two sources of TED for boron implants (B-I): short time component that decays rapidly consistent with nonvisible B-I pairs and a longer time component consistent with interstitial release from the 〈311〉 defects. © 1997 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:81 ,  Issue: 4 )

Date of Publication:

Feb 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.