By Topic

Reinforcement learning for an ART-based fuzzy adaptive learning control network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheng-Jian Lin ; Dept. of Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chin-Teng Lin

This paper proposes a reinforcement fuzzy adaptive learning control network (RFALCON), constructed by integrating two fuzzy adaptive learning control networks (FALCON), each of which has a feedforward multilayer network and is developed for the realization of a fuzzy controller. One FALCON performs as a critic network (fuzzy predictor), the other as an action network (fuzzy controller). Using temporal difference prediction, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network performs a stochastic exploratory algorithm to adapt itself according to the internal reinforcement signal. An ART-based reinforcement structure/parameter-learning algorithm is developed for constructing the RFALCON dynamically. During the learning process, structure and parameter learning are performed simultaneously. RFALCON can construct a fuzzy control system through a reward/penalty signal. It has two important features; it reduces the combinatorial demands of system adaptive linearization, and it is highly autonomous

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 3 )