By Topic

A coupled gradient network approach for static and temporal mixed-integer optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Watta, P.B. ; Dept. of Electr. & Comput. Eng., Wayne State Univ., Detroit, MI, USA ; Hassoun, M.H.

Utilizes the ideas of artificial neural networks to propose new solution methods for a class of constrained mixed-integer optimization problems. These new solution methods are more suitable to parallel implementation than the usual sequential methods of mathematical programming. Another attractive feature of the proposed approach is that some global search mechanisms may be easily incorporated into the computation, producing results which are more globally optimal. To formulate the solution method proposed in this paper, a penalty function approach is used to define a coupled gradient-type network with an appropriate architecture, energy function and dynamics such that high-quality solutions may be obtained upon convergence of the dynamics. Finally, it is shown how the coupled gradient net may be extended to handle temporal mixed-integer optimization problems, and simulations are presented which demonstrate the effectiveness of the approach

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 3 )