Cart (Loading....) | Create Account
Close category search window

Entropy maximization networks: an application to breast cancer prognosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Poh Lian Choong ; Dept. of Electr. & Electron. Eng., Western Australia Univ., Nedlands, WA, Australia ; deSilva, C.J.S. ; Dawkins, H.J.S. ; Sterrett, G.F.

Describes two artificial neural network architectures for constructing maximum entropy models using multinomial distributions. The architectures presented maximize entropy in two ways: by the use of the partition function (which involves the solution of simultaneous polynomial equations), and by constrained gradient ascent. Results comparing the convergence properties of these two architectures are presented. The practical use of these two architectures as a method of inference is illustrated by an application to the prediction of metastases in early breast cancer patients. To assess the predictive accuracy of the maximum entropy models, we compared the results with those obtained by the use of the multilayer perceptron and the probabilistic neural network

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 3 )

Date of Publication:

May 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.