Cart (Loading....) | Create Account
Close category search window
 

Electro-optic phase modulation by polymer dispersed liquid crystals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Vicari, L. ; Istituto Nazionale per la Fisica dei Materiali (INFM) Dipartimento Scienze Fisiche, I 80125 Naples, Italy

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.365200 

We present a mathematical model to describe the optical phase shift induced by polymer dispersed liquid crystals (PDLCs) on light impinging transversely on the sample. PDLCs are dispersions of liquid crystal microdroplets in a polymeric binder. Droplets appear as optically uniaxial spheres randomly oriented so that the material is optically isotropic. The application of an external electric field results in a reorientation of the liquid crystal and therefore in an electrically controllable optical uniaxicity of the material. The model is discussed by comparison with experimental data and with previous theory [F. Basile, F. Bloisi, L. Vicari, and F. Simoni, Phys. Rev. E 48, 432 (1993)]. © 1997 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:81 ,  Issue: 10 )

Date of Publication:

May 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.