Cart (Loading....) | Create Account
Close category search window

Depth dependence of residual strains in polycrystalline Mo thin films using high‐resolution x‐ray diffraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Malhotra, S.G. ; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109‐2136 ; Rek, Z.U. ; Yalisove, S.M. ; Bilello, J.C.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The magnitude of the stress in a thin film can be obtained by measuring the curvature of the film–substrate couple. Crystal curvature techniques yield the average stress throughout the film thickness. On a microscopic level, the details of the strain distribution, as a function of depth through the thickness of the film, can have important consequences in governing film quality and ultimate morphology. A new method, using high‐resolution x‐ray diffraction to determine the depth dependence of strain in polycrystalline thin films, is described. The technique requires an analysis of the diffraction peak shifts of at least six independent {hkl} scattering vectors, at a variety of penetration depths from the free surface of the film. The data are then used to determine the magnitude and directions of the strain eigenvalues in a laboratory reference frame for each penetration depth from the free surface of the film. A linear elastic model was used to determine the strains in successive slabs of the film. Results are reported for two Mo films, with nominal thicknesses of 50 and 100 nm, which were deposited by planar magnetron sputtering onto Si (100) substrates. This technique can provide quantitative insight into the depth variation of residual strains (stresses) in thin films and should work with a wide variety of materials. © 1996 American Institute of Physics.

Published in:

Journal of Applied Physics  (Volume:79 ,  Issue: 9 )

Date of Publication:

May 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.